跳至主要內容
本頁面使用機器翻譯自英語,可能包含錯誤或不清楚的語言。如需最準確的信息,請參閱英文原文。由於更新頻繁,部分內容可能與英文原文有出入。請加入我們在 Crowdin 上的努力,幫助我們改進本頁面的翻譯。 (Crowdin translation page, Contributing guide)

ERC-20

導言

本教程幫助你創建一個符合Kaia 代幣標準,尤其是Fungible Token Standard (ERC-20)的ERC-20 兼容代幣示例。

ERC-20令牌標準 定義了以下 2 個事件和 9 個方法(包括 3 個可選方法)。 與 ERC-20 兼容的代幣是實現以下接口的代幣合約。


function name() public view returns (string) //optional
function symbol() public view returns (string) //optional
function decimals() public view returns (uint8) //optional
function totalSupply() public view returns (uint256)
function balanceOf(address _owner) public view returns (uint256 balance)
function transfer(address _to, uint256 _value) public returns (bool success)
function transferFrom(address _from, address _to, uint256 _value) public returns (bool success)
function approve(address _spender, uint256 _value) public returns (bool success)
function allowance(address _owner, address _spender) public view returns (uint256 remaining)
event Transfer(address indexed _from, address indexed _to, uint256 _value)
event Approval(address indexed _owner, address indexed _spender, uint256 _value)

在上述界面的基礎上,開發人員可以通過添加新功能和邏輯來定製令牌,並將其部署到 Kaia 網絡上。 更多信息,請參閱官方 ERC-20 文檔

在本教程中,您將實現與 ERC-20 兼容的令牌 MyERC20.sol。 該代幣將發行預定數量的代幣,並在部署時將所有代幣發送給合約所有者。

MyERC20.sol "基於 OpenZeppelin 的 ERC20 實現。 本教程的大部分代碼來自 OpenZeppelin 2.3 ,以下 Solidity 文件用於實現 MyERC20.sol

1. 編寫 ERC-20 智能合約

1.1 MyERC20 的總體結構

MyERC20.sol "的完整源代碼如下。 在此實現中,"構造器 "調用 "鑄幣",在部署合約時鑄入預定數量的代幣。


pragma solidity ^0.5.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP. Does not include
* the optional functions; to access them see `ERC20Detailed`.
*/
interface IERC20 {
function totalSupply() external view returns (uint256);
function balanceOf(address account) external view returns (uint256);
function transfer(address recipient, uint256 amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 amount) external returns (bool);
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
event Approval(address indexed owner, address indexed spender, uint256 value);
}
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// Solidity only automatically asserts when dividing by 0
require(b > 0, "SafeMath: division by zero");
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b != 0, "SafeMath: modulo by zero");
return a % b;
}
}
/**
* @dev Implementation of the `IERC20` interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using `_mint`.
* For a generic mechanism see `ERC20Mintable`.
*
* *For a detailed writeup see our guide [How to implement supply
* mechanisms](https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226).*
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an `Approval` event is emitted on calls to `transferFrom`.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard `decreaseAllowance` and `increaseAllowance`
* functions have been added to mitigate the well-known issues around setting
* allowances. See `IERC20.approve`.
*/
contract MyERC20 is IERC20 {
using SafeMath for uint256;
mapping (address => uint256) private _balances;
mapping (address => mapping (address => uint256)) private _allowances;
// NOTE Start of https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.3.0/contracts/token/ERC20/ERC20Detailed.sol
string private _name;
string private _symbol;
uint8 private _decimals;
constructor (string memory name, string memory symbol, uint8 decimals) public {
_name = name;
_symbol = symbol;
_decimals = decimals;
_mint(msg.sender, 100000 * 10 ** uint256(decimals)); // CAUTION!
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei.
*
* > Note that this information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* `IERC20.balanceOf` and `IERC20.transfer`.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
// NOTE End of https://github.com/OpenZeppelin/openzeppelin-solidity/blob/v2.3.0/contracts/token/ERC20/ERC20Detailed.sol
uint256 private _totalSupply;
/**
* @dev See `IERC20.totalSupply`.
*/
function totalSupply() public view returns (uint256) {
return _totalSupply;
}
/**
* @dev See `IERC20.balanceOf`.
*/
function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}
/**
* @dev See `IERC20.transfer`.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See `IERC20.allowance`.
*/
function allowance(address owner, address spender) public view returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See `IERC20.approve`.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
/**
* @dev See `IERC20.transferFrom`.
*
* Emits an `Approval` event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of `ERC20`;
*
* Requirements:
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `value`.
* - the caller must have allowance for `sender`'s tokens of at least
* `amount`.
*/
function transferFrom(address sender, address recipient, uint256 amount) public returns (bool) {
_transfer(sender, recipient, amount);
_approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount));
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to `approve` that can be used as a mitigation for
* problems described in `IERC20.approve`.
*
* Emits an `Approval` event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue));
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to `transfer`, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a `Transfer` event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a `Transfer` event with `from` set to the zero address.
*
* Requirements
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a `Transfer` event with `to` set to the zero address.
*
* Requirements
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 value) internal {
require(account != address(0), "ERC20: burn from the zero address");
_balances[account] = _balances[account].sub(value);
_totalSupply = _totalSupply.sub(value);
emit Transfer(account, address(0), value);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
*
* This is internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an `Approval` event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 value) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = value;
emit Approval(owner, spender, value);
}
/**
* @dev Destoys `amount` tokens from `account`.`amount` is then deducted
* from the caller's allowance.
*
* See `_burn` and `_approve`.
*/
function _burnFrom(address account, uint256 amount) internal {
_burn(account, amount);
_approve(account, msg.sender, _allowances[account][msg.sender].sub(amount));
}
}

MyERC20.sol "由一個接口 "IERC20"、一個庫 "SafeMath "和一個實現 "IERC20 "接口的合約 "MyERC20 "組成。

  • IERC20 "接口定義了ERC-20 規範 中描述的強制接口。
  • SafeMath "庫定義了 Solidity 算術運算的包裝器,並增加了溢出檢查功能,可安全計算 Solidity 的 "uint256 "類型。
  • MyERC20 "實現了 "IERC20 "接口,還定義了三個可選方法,詳見ERC-20 規範
    • 除 ERC20 外,還定義了 "構造器",該構造器用於定義新的 ERC20 令牌名稱和符號,並鑄造預定數量的令牌。 constructor 在首次部署時被調用一次。

1.2 看看重要的方法

讓我們來詳細瞭解一些重要的方法。

(1) function balanceOf(address account) external view returns (uint256);

balanceOf "是 ERC-20 的強制方法。 balanceOf 返回給定地址的餘額。


function balanceOf(address account) public view returns (uint256) {
return _balances[account];
}

balanceOf 只返回存儲在 _balances中的 keyaccount 的值,它是 mapping (address => uint256)類型,如下所示。


mapping (address => uint256) private _balances;

如果 _balances中沒有可用的 key account ,則只會返回 0

(2) function transfer(address recipient, uint256 amount) external returns (bool);

轉讓 "是 ERC-20 的強制性方法。 transfer "會將 "數量 "代幣轉移給 "接收方",並且必須觸發 "Transfer "事件。 如果消息調用者的賬戶餘額沒有足夠的代幣可供使用,函數應拋出。

transfer "只是調用內部方法"_transfer",它實現的實際傳輸和事件如下。


function transfer(address recipient, uint256 amount) public returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}

_transfer 實現 ERC-20 的 transfer 方法的實際行為。

此外,它還能防止使用下面的 require 從零地址或向零地址發送令牌。


function _transfer(address sender, address recipient, uint256 amount) internal {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_balances[sender] = _balances[sender].sub(amount);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}

(3) function approve(address spender, uint256 amount) external returns (bool);

批准 "是 ERC-20 的強制性方法。 批准 "允許 "支出人 "多次從您的賬戶中提款,但以 "金額 "為限。 如果多次調用此函數,則會將津貼重置為 amount

approve "只是調用內部方法"_approve",它實現了 "approve "的實際行為。 msg.sender "作為賬戶 "owner "傳遞。


function approve(address spender, uint256 value) public returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function _approve(address owner, address spender, uint256 value) internal {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = value;
emit Approval(owner, spender, value);
}

批准 "更新 "允許值","允許值 "是一個二維字典,保存了特定 "地址 "的 "支出人 "的允許 "值"。


mapping (address => mapping (address => uint256)) private _allowances;

(4) function _mint(address account, uint256 amount) internal

_mint 不是 ERC-20 的一部分。 但是,我們需要一種方法來創建新的 ERC-20 令牌,因此在此實現中引入了 _mint 來創建新令牌,如下所示。


function _mint(address account, uint256 amount) internal {
require(account != address(0), "ERC20: mint to the zero address");
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}

_mint 是一個內部方法,可在本合同內部調用。

MyERC20.sol中,當部署智能合約以鑄造預定數量的代幣時,_mint只從constructor調用一次。

如果想在部署智能合約後發行額外的代幣,就必須引入一個新的公共方法,如 mint。 實施該方法時應小心謹慎,因為只有授權用戶才能鑄造令牌。

更多詳情,請參閱 OpenZeppelin 示例 ERC20Mintable.sol

2. 部署智能合約

在本節中,您將使用 Remix Online IDE 部署 MyERC20 智能合約。 MYERC20.sol 的完整源代碼見 編寫 ERC-20 智能合約

2.1 先決條件

  • Kaia Wallet:用於部署合約、簽署交易和與合約交互。
  • 水龍頭測試 KAIA:為賬戶注入足夠的 KAIA。

你可以使用 Remix Online IDE 或 Truffle 來部署 MyERC20 智能合約。

2.2 使用 Remix 在線集成開發環境部署智能合約

Remix IDE

  • 導航至 Kaia Remix 插件
  • 在合同文件夾中創建一個 MyERC20.sol 文件
  • 在 Remix 中,點擊編譯合同。
  • 安裝插件後,點擊左側的 Kaia(前 Klaytn)選項卡
  • 選擇 環境 > 注入式提供商 - Kaia Wallet
  • 在合同字段中,選擇您的合同。 例如,MyERC20。
  • 在部署 KAIROSTOKENKAIROS8 時分配以下參數
  • 點擊 部署

ERC20-1-deploy

部署完成後,可以使用用於部署合同的賬戶調用 balanceOf 。 您會發現您的賬戶中有 10000000000000 代幣,如下所示。 由於您在部署上述合約時將 decimal 設置為 8,因此它在構造器中鑄造了固定數量的 100000 代幣,其中一個代幣的十進制值為 10^8。 totalSupply "方法將返回已鑄造代幣的總供應量,也應為 "10000000000000"。

ERC20-2-owner-token

MyERC20 "現已上線!

3. 與 Kaia 錢包中的 ERC-20 令牌互動

您可以使用 Kaia 錢包查看餘額,並轉移您剛剛部署的與 ERC-20 兼容的 KAIROSTOKEN。 要在 Kaia 錢包中查看令牌餘額,請按以下步驟操作:

Kaia 錢包

  • 打開 Kaia 錢包
  • 點擊令牌列表圖標,然後點擊添加令牌按鈕

  • 在 "自定義令牌 "選項卡下的 "令牌合約地址 "字段中粘貼 myERC20.sol 合約的地址。
  • 然後按照提示添加令牌。 您的令牌列表模式應該是這樣的:

讓這個頁面變得更好